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Abstract—A novel intramolecular palladium-mediated arylation approach to benzo[b]fluoren-11-ones has been investigated. This
approach involves the novel oxidation of the key starting 2-(2 0-bromobenzyl)naphthols to 2-(2 0-bromobenzyl)-1,4-naphthoqui-
nones, followed by protection of the quinone moiety of the latter compounds and the final Pd-promoted bi-arylic cyclization of
the resulting 2-(2 0-bromobenzyl)-1,4-dimethoxynaphthalenes.
� 2007 Elsevier Ltd. All rights reserved.
Quinones are compounds of perennial chemical interest
on account of their widespread occurrence in nature and
their wide ranging biological activity and industrial
applications.1 In fact, quinonoid systems have been
extensively studied in the context of continued interest
in the search for new antibiotics. For instance,
benzo[b]fluorene based quinonoids kinobscurinone
(9a),2 kinafluorenone (9b),3 stealthin A (10a)4 (a potent
radical scavenger), stealthin B (10b)4 and stealthin C
(10c)5 are metabolites found in the extract of Streptomy-
ces murayamaensis and prekinamycin (9c) has attracted
considerable attention because it is present in the bio-
synthetic pathways leading to the kinamycin family of
antibiotics, some of which display antibacterial and anti-
tumoural activity.6

The biological activities as well as the unique structure
of these compounds (9 and 10) prompted their synthesis
by a biomimetic approach involving benzo[b]fluorenone
8c,7 which includes a naphthoquinone subunit masked
as 1,4-dimethoxynaphthalene. Several approaches to
this common precursor 8c have been reported, most
involving Friedel–Crafts closure8 of acylbiphenyls
(approach a) or Pd-mediated9 or Ti-mediated10 closure
of diphenylketones (approach b). But both approaches
involve complex preparation of aromatic ketones and
the latter includes a low yielding bi-arylic cyclization. As
a continuation of our work on tetracyclic naphthoqui-
nones by condensation of 1-indanones with benzalde-
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hydes,11 we present here preliminary results of a novel
synthesis of benzo[b]fluorenones 8 (Scheme 1). This
new route is based on a strategy involving approach b
that precludes the limitations outlined above.

The starting 2-(2-bromobenzyl)-1-naphthol 4a12 was
easily and efficiently obtained by aldol condensation of
1-tetralone13 with o-bromobenzaldehyde13 followed by
a spontaneous oxidation of the resulting 2-benzyl-
idene-1-tetralone 3a under the reaction conditions.14

Subsequent oxidation with Fremy’s salt15 allowed us
to carry out the first transformation of a 2-benzyl-1-
naphthol (4a) into 2-benzyl-1,4-naphthoquinone (5a), a
compound that has both the carbon skeleton and the
quinone moiety required for the preparation of the tar-
get compound 8a. Palladium-mediated bi-arylic cycliza-
tion of 5a failed, but this desired ring closure was
achieved after protection of the quinone system of 5a.
Thus reduction of 5a with sodium dithionite followed
by transformation of dinaphthol 6a, which was directly
converted into dimethoxynapahthalene 7a by treatment
with methyl iodide in a basic medium.16 Finally, a mix-
ture of 7a, palladium acetate, triphenylphosphine and
sodium bicarbonate in DMF was heated at 100 �C for
seven hours,9 to give the target benzo[b]fluorenone
8a17 directly in 55% yield, probably by cyclization and
oxidation.18

The potential of this new synthetic route was confirmed
by the successful preparation of benzo[b]fluorenone 8b
from 1-tetralone and 2-bromo-4,5-dimethoxybenzalde-
hyde,19 via compounds 3b, 4b, 5b, 6b and 7b.
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Scheme 1. Compounds 1, 2, 3, 4, 5, 6, 7: (a) R = H; (b) R = OMe. Compound 8: (a) R1 = R2 = R3 = R4 = H, R5 = OMe; (b) R1 = R4 = H,
R2 = R3 = R5 = OMe; (c) R1 = R4 = R5 = OMe, R2 = Me, R3 = H; (d) R1 = R4 = R5 = OH, R2 = Me, R3 = H. Compound 9: (a) X = O, R = OH;
(b) X = O, R = OMe; (c) X = N2, R = OH. Compound 10: (a) R = CH2OH; (b) R = CHO; (c) R = Me. Reagents and conditions: (i) t-BuOK/t-
BuOH, reflux, 23 h (70–74% yield); (ii) (a) Fremy’s salt, KH2PO4, acetone/H2O, rt, 2.5 h (80–92% yield); (iii) Na2S2O4, H2O/dioxane, rt, 5 h; (iv)
K2CO3, MeI, t-BuOK/THF, DMF, rt, 15 h (75–89% yield, two steps); (v) Pd(OAc)2, PPh3, NaHCO3, DMF, 100 �C, 7 h (50–55% yield).
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In summary, we have developed a general synthesis of
benzo[b]fluorenones 8 that includes the novel oxidation
of 2-benzylnaphth-1-ols (4) to 2-benzyl-1,4-naphthoqui-
nones (5) and the novel cyclization of 2-benzyl-1,4-
dimethoxynaphthalenes (7). This route is shorter and
simpler than the previous ones, so may have great utility
for an efficient preparation of stealthins A, B and C
(10a–c) and their analogues. An additional milestone is
the synthesis of kynamycin antibiotics, since they are
benzo[b]fluorene derivatives 9c that have a saturated
and highly functionalized D ring. Work currently in pro-
gress in this area includes studies directed at improving
the efficiency of the cyclization of compounds 7.
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